

 Navigation

 	
 index

 	Facility Registry API 1.0 documentation

 The Facility Registry API has moved to:

http://facilityregistry.org [http://facilityregistry.org/].

 Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Facility Registry API 1.0 documentation

Index

 Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

api_specifications.html

 Navigation

 		
 index

 		Facility Registry API 1.0 documentation »

API Specifications v1.0

Specification Notes

		This document defines an API which uses JSON [http://www.json.org] for exchanging data.

		All dates should follow ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601].

		All field/properties should follow the camelCasing convention.

		Use UTF-8 encoding.

Core Properties

Each facility must contain the following core properties.

Name

Name of the facility.

name: "Kakamega HC"

System Id

The internal system uid is denoted with “id”. The id most be universally unique.

id: '0X9OCW3JMV98EYOVN32SGN4II'

Note: the API does not providing a specific format for IDs. That is left up to the implementation.

URL

URL link to the unique ID API resource for the facility

url: "http://facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II.json"

External Facility Identifiers

One of the primary functions of the facility registry is facilitate a mapping of the different IDs
used by different agencies to represent a particular facility.

Each external identifier consists of the following components:

		agency: agency who created the code. ex) ministry of health, UNICEF, etc.

		context: context/external system in which the agency is using the ID. eg) HMIS, DHIS2, HR

		id: unique identifier

identifiers : [
 {agency: "MOH", context: "DHIS", id: "123"},
 {agency: "UNICEF", context: "mtrac", id: "53adf"},
 { }
]

Geolocation

Geolocation represented by longitude and latitude coordinates in that order.

coordinates: [lng, lat]

Active

Active = true/false indicates whether the facility is active or not.

active: true

CreatedAt

ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp, including timezone, of when the facility was created.

createdAt: "2011-11-16T14:26:15Z"

UpdatedAt

ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp, including timezone, of when the facility was last updated.

updatedAt: "2011-11-16T14:26:15Z"

Extended Properties

Extended properties are implementation specific properties in the properties block.

The property types that are supported are:

		Text

		Integer

		Decimal

		Boolean (true/false)

		Date: ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format. eg) 2012-12-16T18:22:20Z

		Lists

		When representing a single select question: should return the scalar that is the code of the selected value.

		When representing a multiple-select question: should return the codes of the selected values. eg) fruits: [“apples”,”oranges”,”bananas”]

		Can contain complex objects.

Sample properties

"properties": {
 "numBeds": 55,
 "services": ["XR","OBG","TR"],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz"
 "hasMaternity": true,
},

Property field specification expectations

		For each property field, the implementer specifies a stable code that should not be changed once defined. The implementation should warn the user if they attempt to modify the code.

		The property field code should consist only of letters and number and not any special characters, spaces or punctuation to allow them to represent a good xml element. The API does not specify whether to define properties using camelCasing or lower_case, however, we encourage the implementation to be consistent in their formating.

		Each property field should be unique

		Specific properties for attachments and images are not supported in this version. It is possible to use a text string to represent a file path but that is implementation specific

		Properties should follow the camelCasing naming convention

Note

Future releases will support:

		linking to an external data dictionary that defines the property schema for the facility

		linking to external entities and references to other facilities

API

Versioning

Semantic versioning [http://semver.org/]. (X.Y.Z) where X is the major version, Y the minor and Z the patch version. Minor version Y must be incremented if a new backwards compatible functionality is introduced to the API. A major version X must be incremented if any backwards incompatible changes are introduced to the public API.

The major version must be exposed in the URL. Note: the URL pattern may vary by implementation.

/api/v1/facilities.json

All prior versions still supported by the code should be exposed by its own URL.

Authentication

Will be supported initially by HTTP Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication/].

In the future, support for HTTP Digest Authentication [http://en.wikipedia.org/wiki/Digest_access_authentication/] in addition to OAuth 2.0 will be considered.

HTTP Responses

		Success: HTTP 200, XML/JSON representation of object (when applicable)

		Invalid: HTTP 422, XML/JSON representation of errors

		Unauthorized: HTTP 401

		Missing: HTTP 404

		Forbidden: HTTP 403

		Method not Allowed: HTTP 405

		Conflict: HTTP 409

Error Messages

Returns HTTP Response 401 or 404 along with a human readable error message.

Optional Verbose Error messages

JSON

{
 “message”: “human readable error message”,
 “moreInfo” : “http://api.facilityregistry.org/errors/12345"
}

Adding / Updating Facilities

/facilities.json

POST: Creates facility. SUCCESS: HTTP 200 Returns URL to the generated facility.

If a duplicate is detected (up to the implementation) a 409 is returned

Note

Need to define JSON input status

GET: See below

PUT: Error, not supported

DELETE: Error, not supported

/facilities/<id>.json

POST:: Error, not supported

GET: See below

DELETE: Delete facility. SUCCESS: Returns: HTTP 200 and the ID of deleted facility

When the facility registry receives a request to obsolete a facility, the facility registry SHALL validate that the facility exists. If the requested target of deletion does not exist, the facility registry SHALL respond with an HTTP 404 error.

If the facility resource exists, the facility registry SHALL delete the facility resource such that the record is no longer discoverable to consumers. The process by which the facility registry marks the facility as deleted is not specified in this document, and is left to implementers to determine the most appropriate method.

Once the record is deleted, the facility registry SHALL return an HTTP 200 response with the URL of the deleted facility.

PUT: Update facility if exists, if not error. Success: HTTP 200, JSON collection

Query Facility Data

Individual Facility Lookup

GET /facilities/<id>.json

Returns facility in JSON

List Facilities

GET /facilities.json

Returns the list of facilities in json.

allProperties

allProperties is a boolean field (default true) that defines that all the core properties plus the user defined properties in the properties block should be returned.

/facilities.json?allProperties=true

This would return all the properties (core + specified)

Defining Partial Response with fields

/facilities.json?fields=name,id,properties:numBeds

This would return just the specified properties of name, id and numBeds (in the properties sub-object) in a partial response. This is very helpful in optimizing performance in bandwidth constrained settings. All properties in the facility registry are accessible by this method including the core properties and those in the property sub-object.

Filter by Active status

Filter facilities that are active or not. Supported parameters = true, false

/facilities.json?active=true/false

Filter by Updated Since

Returns facilities updated since a particular data expressed in the ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format.

/facilities.json?updatedSince=2011-11-16T00:00:00Z

Sample JSON Output

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

		{
 "facilities": {
 "facility": {
 "name": "Kakamega HC",
 "url": "http: //facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II",
 "id": "0X9OCW3JMV98EYOVN32SGN4II",
 "active": true,
 "createdAt": "2011-11-16T14:26:15Z",
 "updatedAt": "2011-11-16T14:26:15Z",
 "coordinates": [
 -1.6917,
 29.525
],
 "identifiers": [
 {
 "agency": "MOH",
 "context": "DHIS",
 "id": "123"
 },
 {
 "agency": "UNICEF",
 "context": "mtrac",
 "id": "53adf"
 }
],
 "properties": {
 "numBeds": 55,
 "services": [
 "XR",
 "OBG",
 "TR"
],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz",
 "hasMaternity": true,
 "medicalOfficer": "Dr.Mukombo"
 }
 }
 }
}

Recommended Practices

While it is not required, we suggest implementations support gzip, etags and cache headers which can help reduce uncessary data transfer which is helpful in low-bandwidth environments.

Cache headers if implemented could be especially useful, as a common use case seems to be maintaining a mirror of facility information.

 © Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		Facility Registry API 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

api_1_1.html

 Navigation

 		
 index

 		Facility Registry API 1.0 documentation »

API Specifications v1.1

Specification Notes

		This document defines an API which uses JSON [http://www.json.org] for exchanging data.

		All dates should follow ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] and be in UTC. Ex) 2011-11-16T14:26:15Z

		All field/properties should follow the camelCasing convention.

		Use UTF-8 encoding.

Facility Resource

The API exposes a representation of the health facilities in JSON.

Example Health Facility response

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

		{
 "facilities": {
 "facility": {
 "name": "Kakamega HC",
 "url": "http: //facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II",
 "id": "0X9OCW3JMV98EYOVN32SGN4II",
 "active": true,
 "createdAt": "2011-11-16T14:26:15Z",
 "updatedAt": "2011-11-16T14:26:15Z",
 "coordinates": [
 -1.6917,
 29.525
],
 "identifiers": [
 {
 "agency": "MOH",
 "context": "DHIS",
 "id": "123"
 },
 {
 "agency": "UNICEF",
 "context": "mtrac",
 "id": "53adf"
 }
],
 "properties": {
 "numBeds": 55,
 "services": [
 "XR",
 "OBG",
 "TR"
],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz",
 "hasMaternity": true,
 "medicalOfficer": "Dr.Mukombo"
 }
 }
 }
}

Core Properties

Each facility must contain the following core properties.

name - Name of the facility.

name: "Kakamega HC"

id - The internal system unique identifier. The id most be universally unique within the FRED registry.

id: '0X9OCW3JMV98EYOVN32SGN4II'

Note: the API does not providing a specific format for IDs. That is left up to the implementation.

url - URL link to the unique ID API resource for the facility

url: "http://facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II.json"

External Facility Identifiers

One of the primary functions of the facility registry is facilitate a mapping of the different IDs
used by different agencies to represent a particular facility.

Each external identifier consists of the following components:

		agency: agency who created the code. ex) ministry of health, UNICEF, etc.

		context: context/external system in which the agency is using the ID. eg) HMIS, DHIS2, HR

		id: unique identifier

identifiers : [
 {agency: "MOH", context: "DHIS", id: "123"},
 {agency: "UNICEF", context: "mtrac", id: "53adf"},
 { }
]

coordinates

Geolocation represented by longitude and latitude coordinates in that order. All coordinates assume as WSG84 projection.

coordinates: [lng, lat]

active - indicates whether the facility is active or not.

active: {true/false}

createdAt - ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp of when the facility was created.

createdAt: "2011-11-16T14:26:15Z"

updatedAt - ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp of when the facility was last updated.

updatedAt: "2011-11-18T16:26:15Z"

Extended Properties

Extended properties are implementation specific properties in the properties block.

The property types that are supported are:

		String – A series of textual characters

		Integer – A whole number

		Decimal

		Boolean – A true or false value

		Date: ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format. eg) 2012-12-16T18:22:20Z

		Lists - A list of one of the following data types
* Simple data types such as the code mnemonic of selected value(s) (example: “apple”,”orange”)
* Implementation specific complex data

Sample properties

"properties": {
 "numBeds": 55,
 "services": ["XR","OBG","TR"],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz"
 "hasMaternity": true,
},

Property field specification expectations

		For each property field, the implementer specifies a stable code that should not be changed once defined. The implementation should warn the user if they attempt to modify the code.

		The property field code should consist only of letters and number and not any special characters, spaces or punctuation to allow them to represent a good xml element. The API does not specify whether to define properties using camelCasing or lower_case, however, we encourage the implementation to be consistent in their formating.

		Each property field should be unique

		Specific properties for attachments and images are not supported in this version. It is possible to use a text string to represent a file path but that is implementation specific

		Properties should follow the camelCasing naming convention

REST API

Versioning

All FRED API specifications published by the FRED team are assigned a unique version number in the format MAJOR.MINOR.REVISION. These version numbers follow semantic versioning [http://semver.org/] pattern whereby:

		REVISION is incremented for revisions to a MINOR version. These changes represent nonfunctional changes to the API.

		MINOR version numbers are incremented when new functionality is introduced which is backwards compatible with existing functionality in the MAJOR version. MINOR versions numbers are semantically compatible with previous MINOR versions.

		MAJOR version numbers are incremented when new functionality is introduced which is semantically incompatible with previous versions.

/api/v1/facilities.json

All prior versions still supported by the code should be exposed by its own URL.

Authentication

Will be supported initially by HTTP Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication/].

In the future, support for HTTP Digest Authentication [http://en.wikipedia.org/wiki/Digest_access_authentication/] in addition to OAuth 2.0 will be considered.

HTTP Responses

		200 OK - All Indicates that the specified action was successfully completed. A 200 response indicates that the registry did successfully perform the operation and the response contains the final result of the action.

		201 Created - Indicates that a request was successful and as a result, a resource has been created

		401 Unauthorized - Raised when the client attempts to perform an operation against a resource which requires authorization. This error code indicates a challenge for client credentials.

		403 Forbidden - Indicates that the client does not have the necessary permission to perform the specified operation against the requested resource.

		404 Not Found - Indicates that a resource was not found or is not available.

		405 Not Allowed - Indicates that the requested operation is not allowed on the current resource (for example: DELETE on a collection)

		409 Conflict - Indicates that the facility registry has detected a conflict in the operation and has refused to perform the operation.

		410 Gone - Indicates that a resource did exist but has been permanently removed.

		415 Unsupported Media Type - Indicates that the content supplied in the request is not supported by the facility registry.

		500 Internal Server Error - Indicates that the server encountered an error while attempting to execute the desired action.

Error Messages

should we get rid of this?

Returns HTTP Response 401 or 404 along with a human readable error message.

Optional Verbose Error messages

JSON

{
 “message”: “human readable error message”,
 “moreInfo” : “http://api.facilityreOBgistry.org/errors/12345"
}

REST Resources

Get Facilities

GET /facilities.json

200 OK - Returns facility results response object

Parameters

		allProperties - boolean field (default true) specifying that all the copre and extended properties should be returned.

/facilities.json?allProperties={true/false}

Sorting

		sortAsc - Sort ascending

		sortDesc - Sort descending

/facilities.json?sortAsc={property1}

Sorting is currently limited to one field

Pagination

		limit - Number of records to return in a result. Default = 25

		offset - Offset of the search result. Default = 0

		limit=off - Disables pagination. Pagination on by default.

/facilities.json?limit=25&offset=50

Partial Response

		fields - specifies which fields should be returned in the response.

/facilities.json?fields=name,id,properties:numBeds

This would return just the specified properties of name, id and numBeds (in the properties sub-object) in a partial response. This is very helpful in optimizing performance in bandwidth constrained settings. All properties in the facility registry are accessible by this method including the core properties and those in the property sub-object.

Filtering Facilities

		{propertyName} - name of the property you want to filter by

/facilities.json?{propertyName}={filterValue}

		Supports only exact matches of the filter value

		One value per instance of parameter

		Name of a parameter must exactly match the name of the property (core or extended) on which it filters data

		Instances of the same parameter are OR and different are AND.

For example: ?properties.services=OBG&properties.services=ER would filter all facilities offering OBG OR ER, where as ?identifiers.id=2030&identifiers.agency=MOH would filter facilities with an identifier 2030 AND identifier assigned by MOH.

Filter by Active status

		active - filter facilities based on whether they are active or not.

/facilities.json?active={true/false}

Filter by Updated Since

		updatedSince - return facilities updated since a particular date expressed in ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format.

/facilities.json?updatedSince=2011-11-16T00:00:00Z

Create a Facility

POST /facilities.json

201 Created - Header location set to the url of the new resource

If a duplicate is detected (up to the implementation) a 409 is returned

Note

Need to define JSON input status

PUT, DELETE - Not supported

HTTP Response: 405 Not Allowed

Return an individual facility

GET /facilities/{id}.json

POST:: Error, not supported

Delete a facility

DELETE /facilities/{id}.json

200 OK - Returns id of the deleted facility.

When the facility registry receives a request to obsolete a facility, the facility registry SHALL validate that the facility exists. If the requested target of deletion does not exist, the facility registry SHALL respond with an HTTP 404 error.

If the facility resource exists, the facility registry SHALL delete the facility resource such that the record is no longer discoverable to consumers. The process by which the facility registry marks the facility as deleted is not specified in this document, and is left to implementers to determine the most appropriate method.

Once the record is deleted, the facility registry SHALL return an HTTP 200 response with the URL of the deleted facility.

PUT: Update facility if exists, if not error. Success: HTTP 200, JSON collection

GET: Returns facility

Recommended Practices

While it is not required, we suggest implementations support gzip, etags and cache headers which can help reduce uncessary data transfer which is helpful in low-bandwidth environments.

Cache headers if implemented could be especially useful, as a common use case seems to be maintaining a mirror of facility information.

 © Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/up-pressed.png

future_features.html

 Navigation

 		
 index

 		Facility Registry API 1.0 documentation »

Future API Features

Proposed features for future API releases.

Version 1.1

Future TBD

Core Properties

Add support for open_date and closed_date?

Meta Summary Data (optional)

Results return a meta block of summary resultset data to make client application development easier. This is an optional feature to the core API.

::
`

		meta: {

		
limit: 2,
next: null,
offset: 0,
previous: null,
total_count: 29

},

Pagination

/api/features.json?limit=25&offset=50

		limit: the amount of records to return in a result

		offset: the offset of the search result. Facilitates pagination

		paging=false: turns paginiation off

Sorting

/facilities.json?sortAsc=beds&sortDesc=nurses

Sorts the results by property.

Note

		Each field type needs to define what ascending/descending means.

		Sorting precedence is left to right (first by beds then by nurses in the example above) - closest to the “?”

Filtering Facilities

/facilities.json?property1=value&property2=value

Properties apply to all core and user defined facility properties

Counting

/facilities/count.json

Returns the count of all facilities

/facilities/count.json?beds=10

Returns counts of facilities where the number of beds are equal to 10, with beds=10 representing the querystring.

Text Search

/facilities.json?q=search_value

Text search

Note

Support for this will vary by implementation.

Implementing service should specify clearly in their documentation what fields support text search.

The text search:

		Searches in values of properties

		Searches in both codes and values of Coded Value style properties (lists, tags, hierarchies, etc)

A site with a coded value “CHP”->”Community Health Post” would be a hit on a query on the word “post”
A site with a coded value of “0203”->”Mygenge” would be a hit on queries “203” and “genge”

Sample XML Output

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

		<?xml version="1.0" encoding="UTF-8"?>
<facility xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:www.openfacility.org/v1.0 facility.xsd"
 xmlns="http:www.openfacility.org/v1.0"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
<facilities>
 <facility>
 <!-- core required properties -->
 <url>http://facilityregistry.org/api/facilities/0X9OCW3JMV98EYOVN32SGN4II</url>
 <id>0X9OCW3JMV98EYOVN32SGN4II</id> <!-- internal guid -->
 <moh_id identifier=”yes” agency=”moh” context =”dhis”>1234</moh_id> <!-- ministry of health DHIS-->
 <unicef_id identifier=”yes” agency=”unicef” context =”mtrac”>9534</unicef_id> <!-- UNICEF mTrac ID-->
	<name>Ruhiira HC</name>
 <active>yes</active>
	<created_at>2011-11-16T14:26:15Z</created_at>
	<updated_at>2011-11-16T14:26:15Z</updated_at>
	<active>yes</active>
 <date_closed>2011-12-20 15:09:47</date_closed>
	<geo:lat>-1.69172</geo:long>
	<geo:long>29.52505</geo:long>
	<!-- optional properties -->
	<rm:properties xlmns:rm="http://resourcemap.instedd.org/api/1.0>
	 <rm:number_beds>10</rm:number_beds>
	 <rm:medical_officer>Dr. Mukombo</rm:medical_officer>
	 ...
	</properties>
 </facility>
 ...
</facilities>

 © Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

_static/up.png

api_1_1rc.html

 Navigation

 		
 index

 		Facility Registry API 1.0 documentation »

API Specifications v1.1

Specification Notes

		This document defines an API which uses JSON [http://www.json.org] for exchanging data.

		All dates should follow ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601].

		All field/properties should follow the camelCasing convention.

		Use UTF-8 encoding.

Core Properties

Each facility must contain the following core properties.

Name

Name of the facility.

name: "Kakamega HC"

System Id

The internal system uid is denoted with “id”. The id most be universally unique.

id: '0X9OCW3JMV98EYOVN32SGN4II'

Note: the API does not providing a specific format for IDs. That is left up to the implementation.

URL

URL link to the unique ID API resource for the facility

url: "http://facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II.json"

External Facility Identifiers

One of the primary functions of the facility registry is facilitate a mapping of the different IDs
used by different agencies to represent a particular facility.

Each external identifier consists of the following components:

		agency: agency who created the code. ex) ministry of health, UNICEF, etc.

		context: context/external system in which the agency is using the ID. eg) HMIS, DHIS2, HR

		id: unique identifier

identifiers : [
 {agency: "MOH", context: "DHIS", id: "123"},
 {agency: "UNICEF", context: "mtrac", id: "53adf"},
 { }
]

Geolocation

Geolocation represented by longitude and latitude coordinates in that order.

coordinates: [lng, lat]

Active

Active = true/false indicates whether the facility is active or not.

active: true

CreatedAt

ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp, including timezone, of when the facility was created.

createdAt: "2011-11-16T14:26:15Z"

UpdatedAt

ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] timestamp, including timezone, of when the facility was last updated.

updatedAt: "2011-11-16T14:26:15Z"

Extended Properties

Extended properties are implementation specific properties in the properties block.

The property types that are supported are:

		String – A series of textual characters

		Integer – A whole number

		Decimal

		Boolean – A true or false value

		Date: ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format. eg) 2012-12-16T18:22:20Z

		Lists - A list of one of the following data types
* Simple data types such as the code mnemonic of selected value(s) (example: “apple”,”orange”)
* Implementation specific complex data

Sample properties

"properties": {
 "numBeds": 55,
 "services": ["XR","OBG","TR"],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz"
 "hasMaternity": true,
},

Property field specification expectations

		For each property field, the implementer specifies a stable code that should not be changed once defined. The implementation should warn the user if they attempt to modify the code.

		The property field code should consist only of letters and number and not any special characters, spaces or punctuation to allow them to represent a good xml element. The API does not specify whether to define properties using camelCasing or lower_case, however, we encourage the implementation to be consistent in their formating.

		Each property field should be unique

		Specific properties for attachments and images are not supported in this version. It is possible to use a text string to represent a file path but that is implementation specific

		Properties should follow the camelCasing naming convention

Note

Future releases will support:

		linking to an external data dictionary that defines the property schema for the facility

		linking to external entities and references to other facilities

REST API

Versioning

All FRED API specifications published by the FRED team are assigned a unique version number in the format MAJOR.MINOR.REVISION. These version numbers follow a aemantic versioning [http://semver.org/] pattern whereby:

1.REVISION is incremented for revisions to a MINOR version. These changes represent nonfunctional changes to the API.
2.MINOR version numbers are incremented when new functionality is introduced which is backwards compatible with existing functionality in the MAJOR version. MINOR versions numbers are semantically compatible with previous MINOR versions.
3.MAJOR version numbers are incremented when new functionality is introduced which is semantically incompatible with previous versions.

/api/v1/facilities.json

All prior versions still supported by the code should be exposed by its own URL.

Authentication

Will be supported initially by HTTP Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication/].

In the future, support for HTTP Digest Authentication [http://en.wikipedia.org/wiki/Digest_access_authentication/] in addition to OAuth 2.0 will be considered.

HTTP Responses

		Success: HTTP 200

		Invalid: HTTP 422

		Unauthorized: HTTP 401

		Missing: HTTP 404

		Forbidden: HTTP 403

		Method not Allowed: HTTP 405

		Conflict: HTTP 409

Code Name Opt Scope Trigger
- 200 OK RAllIndicates that the specified action was successfully completed. A 200 response indicates that the registry did successfully perform the operation and the response contains the final result of the action.
- 401 UnauthorizedRAllRaised when the client attempts to perform an operation against a resource which requires authorization. This error code indicates a challenge for client credentials.
- 403 ForbiddenRAllIndicates that the client does not have the necessary permission to perform the specified operation against the requested resource.
- 404 Not FoundRGETIndicates that a resource was not found or is not available.
- 405 Not AllowedRAllIndicates that the requested operation is not allowed on the current resource (for example: DELETE on a collection)
- 409 ConflictRPOSTIndicates that the facility registry has detected a conflict in the operation and has refused to perform the operation.
- 410 GoneOGETIndicates that a resource did exist but has been permanently removed.
- 415 Unsupported Media Type O POST, PUTIndicates that the content supplied in the request is not supported by the facility registry.
- 42 2InvalidRPOST, PUT Indicates that the request is not well-formed, is missing data, or is semantically invalid and could not be processed by the facility registry.
- 500 Internal Server ErrorRAllIndicates that the server encountered an error while attempting to execute the desired action.

Error Messages

Returns HTTP Response 401 or 404 along with a human readable error message.

Optional Verbose Error messages

JSON

{
 “message”: “human readable error message”,
 “moreInfo” : “http://api.facilityregistry.org/errors/12345"
}

Adding / Updating Facilities

/facilities.json

POST: Creates facility. SUCCESS: HTTP 200 Returns URL to the generated facility.

If a duplicate is detected (up to the implementation) a 409 is returned

Note

Need to define JSON input status

GET: See below

PUT: Error, not supported

DELETE: Error, not supported

/facilities/<id>.json

POST:: Error, not supported

GET: See below

DELETE: Delete facility. SUCCESS: Returns: HTTP 200 and the ID of deleted facility

When the facility registry receives a request to obsolete a facility, the facility registry SHALL validate that the facility exists. If the requested target of deletion does not exist, the facility registry SHALL respond with an HTTP 404 error.

If the facility resource exists, the facility registry SHALL delete the facility resource such that the record is no longer discoverable to consumers. The process by which the facility registry marks the facility as deleted is not specified in this document, and is left to implementers to determine the most appropriate method.

Once the record is deleted, the facility registry SHALL return an HTTP 200 response with the URL of the deleted facility.

PUT: Update facility if exists, if not error. Success: HTTP 200, JSON collection

Individual Facility Lookup

GET /facilities/<id>.json

Returns facility in JSON

Get Facilities

GET /facilities.json

Returns the list of facilities in json.

Sorting

/facilities.json?sortAsc=beds&sortDesc=nurses

Sorting precedence from left to right.

Pagination

/facilities.json?limit=25&offset=50

		Limit: the amount of records to return in a result. Default: Offset=25

		Offset: the offset of the search result. Default: Offset=0

allProperties

allProperties is a boolean field (default true) that defines that all the core properties plus the user defined properties in the properties block should be returned.

/facilities.json?allProperties=true

This would return all the properties (core + specified)

Defining Partial Response with fields

/facilities.json?fields=name,id,properties:numBeds

This would return just the specified properties of name, id and numBeds (in the properties sub-object) in a partial response. This is very helpful in optimizing performance in bandwidth constrained settings. All properties in the facility registry are accessible by this method including the core properties and those in the property sub-object.

Filtering Facilities

/facilities.json?propertyName=filterValue

Query parameters MUST be passed as one value per parameter. Query parameters MUST map to core properties with the same name. Query parameter values MUST be URL encoded when sent to the facility registry service.

Implementers MAY choose to extend the available query parameters made available to consumers. When extended query parameters are implemented, they MUST be implemented such that:
* The name of the query parameter MUST exactly match the name of a property the parameter filters, and
* Repetitions of the same named parameter MUST be considered an OR operation. For example, if a facility registry supports filtering on creation date then a filter for all facilities created in January or February of 2012 would be represented as: “?createdAt=2012-01&createdAt=2012-02”, and
* Implementers MUST declare which extended query parameters they expose.

Filter by Active status

Filter facilities that are active or not. Supported parameters = true, false

/facilities.json?active=true/false

Filter by Updated Since

Returns facilities updated since a particular data expressed in the ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format.

/facilities.json?updatedSince=2011-11-16T00:00:00Z

Sample JSON Output (UTF-8 encoded)

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

		{
 "facilities": {
 "facility": {
 "name": "Kakamega HC",
 "url": "http: //facilityregistry.org/api/v1/facilities/0X9OCW3JMV98EYOVN32SGN4II",
 "id": "0X9OCW3JMV98EYOVN32SGN4II",
 "active": true,
 "createdAt": "2011-11-16T14:26:15Z",
 "updatedAt": "2011-11-16T14:26:15Z",
 "coordinates": [
 -1.6917,
 29.525
],
 "identifiers": [
 {
 "agency": "MOH",
 "context": "DHIS",
 "id": "123"
 },
 {
 "agency": "UNICEF",
 "context": "mtrac",
 "id": "53adf"
 }
],
 "properties": {
 "numBeds": 55,
 "services": [
 "XR",
 "OBG",
 "TR"
],
 "equipment": [
 {
 "id": 542,
 "name": "Microscope"
 },
 {
 "id": 942,
 "name": "Vaccine Fridge"
 }
],
 "manager": "Mrs. Liz",
 "hasMaternity": true,
 "medicalOfficer": "Dr.Mukombo"
 }
 }
 }
}

Recommended Practices

While it is not required, we suggest implementations support gzip, etags and cache headers which can help reduce uncessary data transfer which is helpful in low-bandwidth environments.

Cache headers if implemented could be especially useful, as a common use case seems to be maintaining a mirror of facility information.

 © Copyright 2012, FRED Working Group.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

